


AHR R&D PROJECTS

- 1. AL BAHR TOWERS
- 2. KARACHI PORT TRUST TOWERS
- 3. TORONTO METRO
- 4. MASDAR CONFERENCE HALL
- 5. DUBAI METRO +

AHR INNOVATE UK BUILDING PERFORMANCE EVALUATIONS

ENERGY PERFORMANCE GAP | DATA AUDIT

BRUKL Output Document (B) HM Government Compliance with England and Wales Building Regulations Part L

Project name Location School As designed Date: Fri Juli 03 12 29:56 2009 Administrative information Building details Address: Lacked Lase, River, 191 20T Certification fool Catolistion engine: Agadre Address: Lacked Lase, River, 191 20T

Calculation engine version:"5.9.0"	Certifier details
Interface to calculation engine: IES Virtual Environme	Mame Max Fortham LLP
Interface to calculation engine version:5.9.0	Telephone number:0207 267 5161
BRURI, compliance check version: v3.1.a	Address: 42/43 Gloucester Crescent, London, Sill® 1TG

Criterion 1: Predicted CO2 emission from proposed building does not exceed the target

11	Calculated CO2 emission rate from notional building	28.5 KgCO2/m2.annum
1.2	Improvement factor	0.16
1.3	LZC benchmark	0.1
1.4	Target CO2 Emission Rate (TER)	21.6 KgCO2/m2.annum
1.5	Building CO2 Emission Rate (BER)	18.5 KgCO2/m2.annum
1.6	Are emissions from building less than or equal to the target?	BER +< TER
1.7	Are as built details the same as used in BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and the building services systems should be no worse than the design limits

2.1 Are the U-values better than the design limits? Better than design limits

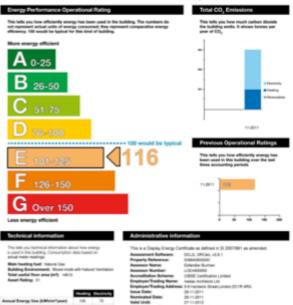
Element	Uson	Uson	Ucon	Urom	Surface where this maximum value occurs'
wai**	0.35	0.36	0.7	0.36	ROOM0000 Sur[2]
Floor	0.25	0.25	0.7	0.25	ROOM0000 Sur(0)
Roof	0.25	0.25	0.35	0.25	ROCM0000 Sur[1]
Windows***, roof windows, and rooflights	2.2	2.15	3.3	2.18	R00M0001Sur[2]
Personnel doors	2.2	0	3	0	No Personnel doors in building
Vehicle access & similar large doors	1.5	0	4	0	No Vehicle access doors in building
High usage entrance doors	6	0	6	0	No High usage entrance doors in building
Union * Limiting area-weighted average U-cal Union * Calculated area-weighted average U-					dividual element U-values (Won2K) Eindividual element U-values (Won2K)
There might be more than one surface excess ** Automatic Unature check by the tool does n *** Display windows and similar glasting are no	d apply to a	untain mails	whose limit		

BRUKL

Energy Performance Certificate Non-Domestic Building	HMGovernment
Losford School of Science & Technology Losford Lane ILFORD IG1 20T	Certificate Reference Number 0270-5654-0390-0480-0034
This certificate shows the energy rating of this buildin the building fabric and the heating, ventilation, coolin compared to two benchmarks for this type of buildin	g and lighting systems. The rating is

the building fabric and the heating, ventilation, cooling and lighting systems. The rating is compared to two benchmarks for this type of building: one appropriate for new buildings and one appropriate for existing buildings. There is more advice on how to interpret this information on the Government's website www.communities.gov.uk/epbd.

Grid Supplied Electricity


Heating and Natural Ventilation

15560 309

Benchmatricks Duildings similar to this one could base ratings as follows: 4.6 If newly built 0.0 If newly built excelling stock

Display Energy Certificate How efficiently is this building be	
Lodiet School of Science & Technology Londont School of Science & Technology Londont Leve &/D400 &9:307	Certificate Reference Number: 9503-1089-0699-0090-8495

This certificate indicates how much arrange is being used to operate this building. The operational rating is based or meter readings of all the arrange actually used in the building. It is compared to a barrentment that represents performance indicates of all buildings of this type. There is now achies on their 1 reflected the internation on the Covernment's weekeed www.communities.gov.uk/ig0.0.

Related Party Disclosure: Not related to the occupier

Recommendations for improving the arrange afficiency of the building are contained in the accompanying Advisory Report.

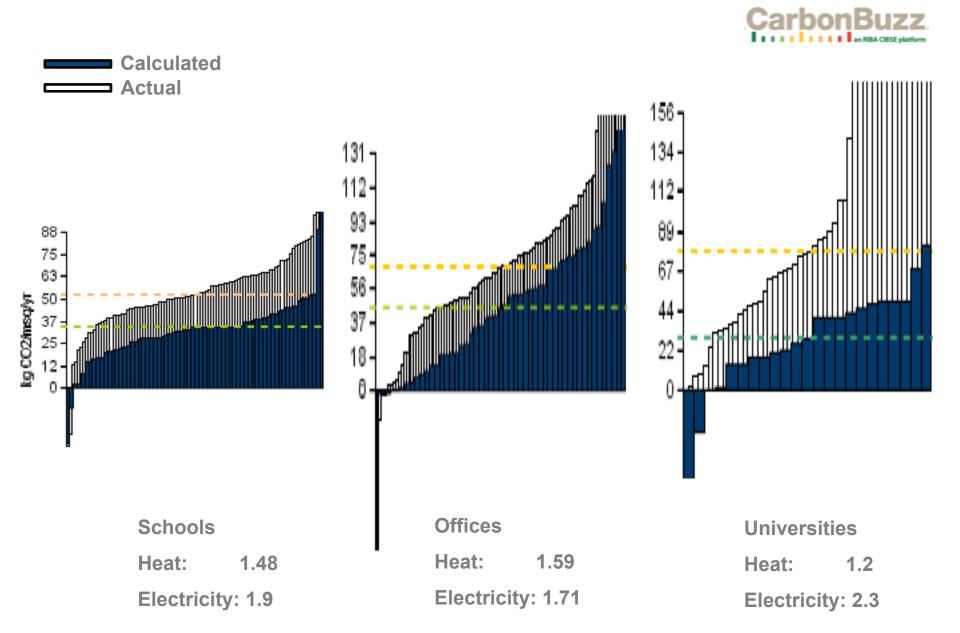
			- post-core	
1999.00	-	***	-	-
t-may	-	-	and the second	

0% 0%

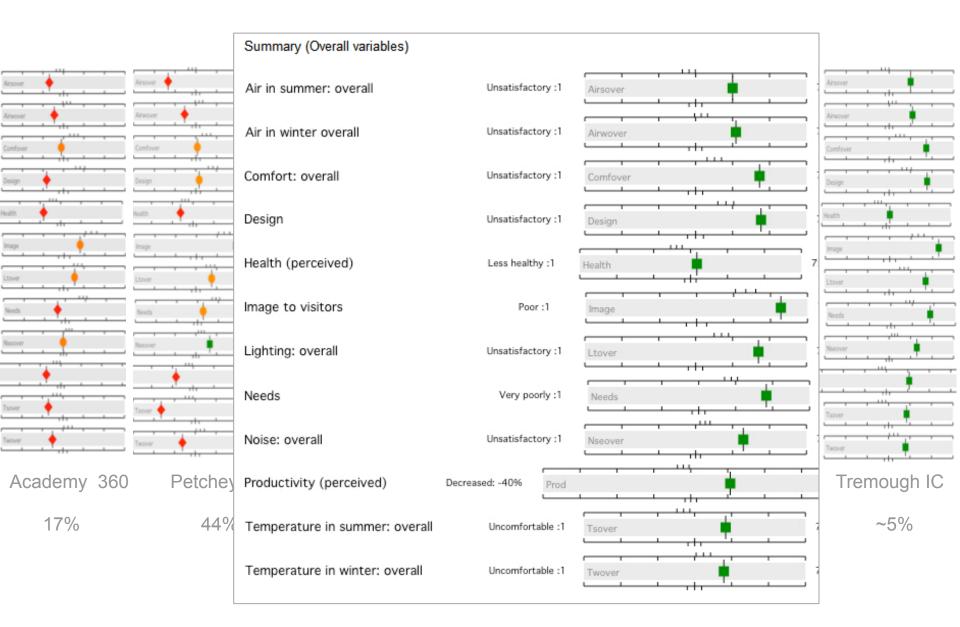
DEC

EPC

Main heating fael:


Building environment:

Total useful floor area (m'):


Building complexity (NOS level):

Building emission rate (kgCO,/m²): 13.08

SECTOR BY SECTOR DATA | CALCULATED VS ACHIEVED PERFORMANCE

FEEDBACK ON COMFORT | IMPACT OF ARCHITECTURE

THE 'THREE PILLARS' OF BUILDING PERFORMANCE

= ENERGY & RESOURCE USED + MEASURED IEQ + OCCUPANT EXPERIENCE

COSTS AND RISKS ASSOCIATED WITH THE PERFORMANCE GAP

Capital cost of unused/underutilised equipment: Metering, BMS, sensors and controls, AHU inverters, actuators, LZCs, etc. can amount to 2-5% of capital cost

Misplaced value engineering: fabric performance and air-tightness, all openings, floor to floor heights, thermal mass, entrance lobbies, seasonal commissioning, daylighting, controls, training, manuals & log book – compliance or architecture?

Increased management, maintenance and energy costs: between 15-44% of total annual energy costs could be saved amounting to potentially tens of thousands of pounds per year

Mitigation costs: ~ 50% of annual energy costs – Soft Landings with energy disclosure approximately 0.1% of construction budget

Profit loss of consultants and contractors

Productivity loss for occupiers and FM

Policy change is needed to encourage disclosure – reinforce DECs

Health & comfort

Climate change resilience

Life cycle cost & value

ENHANCED ENVIRONMENT

Circular use of resources

Source: Artist Maria Arceo

Energy

Water

Materials

FUNCTIONAL AND PERFORMATIVE RETROFIT

Useful area increased by 30% Energy bills reduced by 60% EPC rating improved by notches Value doubled, including retrofit cost Loan to value ratio dropped from 40%

RESOURCE EFFICIENCY OUTCOMES | THE POWER OF INDICATORS

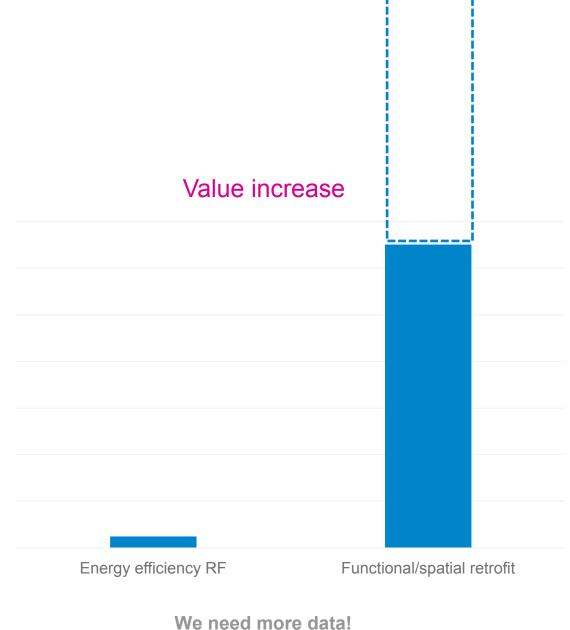
96%

Reduction in energy $\textbf{\pounds} \textbf{\pounds}$

81% GAS USE REDUCTION kWh

67% ELECTRICITY USE REDUCTION kWh

QUALITY OF LIFE QUALITY OUTCOMES


Pupil detentions significantly reduced



A DESIGN PROBLEM | ARCHITECTURE AS GAME-CHANGER | UNLOCK

VALIDATION | THE ROLE OF FEEDBACK IN CONTINUOUS IMPROVEMENT

MACRO-OBJECTIVES & INDICATORS

1. GHG Emissions Along the building lifecycle	Primary & Delivered Energy consumption in use: kWh/m²/ yr	Global Warming Potential embodied CO ₂ eq./m ²	tion/Reuse/	tion, mical
2. Material Impacts Low impact material life cycles	Bill of Materials: Abiotic fossil fuels, minerals and metals, Biotic materials	Waste Flows: kg/m ² Disposed, reused, recycled, E recovery	Service Life ty Deconstruction/Reuse/ recyclability	LCA Criteria: depletion, acidification, hication, Photochemical creation
3. Water Use Circular use of water resources	Use Phase Consumption: m ³ /occupant/yr		Adaptability	Other LCA Cri ozone depletion eutrophication, ozone creation
4. IEQ Healthy & comfortable spaces	Indoor Air Quality: ventilation rat Pollutants: TVOC, CVOC, RI VOC, Thermal Comfort: % time out of r	Light Acoustic Visual		
5. Climate Change Adaptation, resilience & impact	Extreme weather events under Thermal Comfort: % time out of r Flood Risk: surface water runoff; t	Sun Rain Wind Snow Sea level		
6. Cost & Value Optimised over whole life	Life cycle costs EUR/m2/yr	Value Creation & Risk F Data quality of indicators	actors:	

- EU RESEARCH - THINKING BIG!

- Architectural design as gamechanger
- Validation
- Disclosure
- Lifecycle approach

