UCL Institute for Environmental Design and Engineering

The benefits of a holistic approach to building performance data

22 June 2018

Dr Esfand Burman Lecturer, UCL Institute for Environmental Design and Engineering

Outline

- Introduction to TOP project
- Overview of the case studies
- Available data
- Building diagnostics and improvement opportunities
- Relevance to Level(s)

Total Performance of Low Carbon Buildings in China and the UK (TOP)

Unintended consequences of energy efficiency policies

TOP case studies in the UK

- TOP focus is large scale building projects
- Where modest improvements in building procurement & management could bring significant environmental benefits
- Offices, educational buildings, and hospitals account for around 65% of the UK non-domestic building stock & 32% of its carbon emissions
- Apartment blocks account for 12% of the UK residential floor area
- Eight case studies are covered in the UK (two from each sector)

Hospitals

Apartment blocks

Energy performance of the non-domestic cases against Good Practice (GP) benchmarks

Ambitious 'energy budgets' set out by designers; the building is subject to Soft Landings & performance contracting

Can performance contracting close the gap?

The target was to achieve DEC-A rating by the second year of operation

Energy performance: Office 1

Net electrical demand: Office 1

IEQ Performance: Air Quality

 Indoor CO₂ concentration (reproduced from BMS data)

• Indoor PM_{2.5} concentration

Out of range values: thermal comfort

Low-energy buildings

Source: Abadie et al., 2016. IEA EBC Annex 68 – Indoor Air Quality Design and Control in Low-energy Residential Buildings, SUBTASK 1: Defining the metrics

Towards 'total' performance: Energy + IAQ

Source: Abadie et al., 2016. IEA EBC Annex 68 – Indoor Air Quality Design and Control in Low-energy Residential Buildings, SUBTASK 1: Defining the metrics

TOP Case Study (Office 1): Natural ventilation strategy

Monitoring of indoor/outdoor air quality

Trade-offs between CO₂ levels (ventilation rate) and NO₂/PM2.5

TOP Case Study (Hospital 1)

- Hospital in Bristol City Centre
- Inpatient services for surgery and medicine (two operating theatres)
- Full mechanical ventilation (10-12 ACH)
- Sealed envelope

CO₂ concentration levels are usually lower than 750 ppm. (IDA Class 4 Ventilation in BS EN 13779)

Monitoring of indoor/outdoor air quality: PM2.5

Indoor concentration levels are significantly lower than outdoor. (F9/HEPA filtration in air handling units)

^AUCL

Monitoring of indoor/outdoor air quality: NO₂

Indoor NO₂ closely follows outdoor NO₂! (Activated carbon filter or other measures required)

NO2 concentrations in non-domestic case studies

WHO guideline limits:

Annual mean (chronic health effects): 40 μg/m³ (21 ppb)
Hourly mean (acute health effects): 200 μg/m³ (105 ppb)

Internal sources of pollution

- Formaldehyde in all apartments 3xs ELV's after 3 and a half years.
- Perceived wisdom of 2 years to off-gas is questionable. Boost ventilation mode on MVHR required to be used?
- No notable formaldehyde in one school possibly due to low-emission material specification for fixtures and fittings.

Passive sampling of VOCs: heating season

VOC concentration (µg/m³) &	APT. 3 (Block A, 9th Floor)			APT. 4 (Block B, Ground Floor)			IEA EBC Annex 68 Long
Air Change rates per Hour for each zone	Living room	Kitchen	Sample bedroom	Living room	Kitchen	Sample bedroom	Term ELV
Benzene	1.3	1.0	1.2	1.5	2.1	1.6	0.2
Formaldehyde	29.25	26.87	29.53	21.23	31.35	27.44	9
Trichloroethylene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2
Styrene	1.5	2.2	3.0	0.8	0.7	1.7	30
Naphthalene	5.4	5.4	5.0	0.9	0.9	1.3	2
Toluene	2.7	2.9	3.1	2.2	2.6	2.4	250
Tetrachloroethylene	0.6	<0.6	<0.6	1.5	1.2	1.8	100
ACH (PFT measurements)	0.50	0.52	0.76	1.02	1.14	0.6	n/a

UCL

Concentration levels of benzene and formaldehyde are significantly higher than long-term/chronic exposure limit values (ELVs) in both apartments 3 years after completion!

Conclusions

- Energy Performance Contracting & Soft Landings are quite effective in closing the performance gap
- However, IEQ must also be included (Towards EEPC)
- Collated data point to improvement opportunities in control strategies in both naturally & mechanically ventilated buildings
- Standards for VOC source control of construction material should be improved

Relevance to Level(s):

Design targets and operational data for energy, thermal comfort and IAQ available for 4 UK case studies with high granularity + calibrated computer models for scenario analysis: LEVEL 3

One building registered for Level(s) pilot study: the office building subject to EPC & Soft Landings

Available Data for Level(s)

- Active monitoring results for four buildings (weekly blocks in heating season& summer): PM1-10, NO₂, TVOC, CO, CO₂, T, RH
- Passive sampling results (weekly blocks in heating season& summer): concentrations of all critical pollutants identified for low energy dwellings in Subtask 1 of IEA EBC Annex 68
- PFT measurements in apartments (air exchanges in all zones)
- Contextual information: occupancy level & pattern, occupant behaviour (self-reported + site observations)
- Energy performance data
- Occupant satisfaction surveys (thermal comfort & IAQ)
- Design information (energy targets and IEQ standard limiting values)

UCL

Towards 'total' energy & environmental performance

Source: Evening Standard, 8 May 2017

Any questions?

Contact: esfand.burman@ucl.ac.uk

